Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park
نویسندگان
چکیده
National Parks are hallmarks of ecosystem preservation in the United States. The introduction of alien invasive plant species threatens protection of these areas. Bromus tectorum L. (commonly called downy brome or cheatgrass), which is found in Rocky Mountain National Park (hereafter, the Park), Colorado, USA, has been implicated in early spring competition with native grasses, decreased soil nitrogen, altered nutrient and hydrologic regimes, and increased fire intensity. We estimated the potential distribution of B. tectorum in the Park based on occurrence records (n = 211), current and future climate, and distance to roads and trails. An ensemble of six future climate scenarios indicated the habitable area of B. tectorum may increase from approximately 5.5% currently to 20.4% of the Park by the year 2050. Using ordination methods we evaluated the climatic space occupied by B. tectorum in the Park and how this space may shift given future climate change. Modeling climate change at a small extent (1,076 km2) and at a fine spatial resolution (90 m) is a novel approach in species distribution modeling, and may provide inference for microclimates not captured in coarse-scale models. Maps from our models serve as high-resolution hypotheses that can be improved over time by land managers to set priorities for surveys and removal of invasive species such as B. tectorum.
منابع مشابه
Dissertation Evaluating Risk for Current and Future Bromus Tectorum Invasion and Large Wildfires at Multiple Spatial Scales in Colorado and Wyoming, Usa
................................................................................................................................ ii ACKNOWLEDGEMENTS .......................................................................................................... iv CHAPTER 1. BACKGROUND ................................................................................................... 1 History and Ec...
متن کاملBromus Response to Climate and Projected Changes with Climate Change
A prominent goal of invasive plant management is to prevent or reduce the spread of invasive species into uninvaded landscapes and regions. Monitoring and control efforts often rely on scientific knowledge of suitable habitat for the invasive species. However, rising temperatures and altered precipitation projected with climate change are likely to shift the geographic range of that suitable ha...
متن کاملChapter 1 : Study Area Description
The boundary for the Wyoming Basins Ecoregional Assessment (WBEA) was largely determined by the co-occurrence of some of the largest tracts of intact sagebrush (Artemisia spp.) remaining in the western United States with areas of increasing resource extraction. The WBEA area includes two ecoregions in their entirety, Wyoming Basins and Utah-Wyoming Rocky Mountains, and portions of two others (S...
متن کاملEco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested...
متن کاملPredicting small-mammal responses to climatic warming: autecology, geographic range, and the Holocene fossil record
Forecasting how species will respond to climatic change requires knowledge of past community dynamics. Here we use time-series data from the small-mammal fossil records of two caves in the Great Basin of the American West to evaluate how contrasting and variable local paleoclimates have shaped small-mammal abundance dynamics over the last 7500 years of climatic change. We then predict how speci...
متن کامل